Constitutive activation of MAPK/ERK inhibits prostate cancer cell proliferation through upregulation of BRCA2.
نویسندگان
چکیده
BRCA2 is central to an utterly diverse biological behavior elicited after integrin-mediated normal and prostate cancer cell adhesion to basement membrane (BM) and extracellular matrix (ECM) proteins. Unlike normal cells, adhesive stimuli in cancer cells activate PI 3-kinase/AKT signaling resulting in BRCA2 degradation and unchecked cancer cell proliferation and metastasis. However, the precise mechanisms involved in normal BRCA2 homeostasis are unknown. We investigated ERK and AKT phosphorylation in normal (PNT1A) and cancer (PC-3) prostate cells after adhesion to ECM and the effects upon BRCA2 and cell proliferation. PNT1A cell adhesion to ECM triggered MAPK/ERK signaling resulting in upregulation of BRCA2 mRNA and protein, with negligible effects upon cell proliferation. Disruption of MAPK/ERK with PD98059 prevented any BRCA2 upregulation inhibiting DNA synthesis below basal levels. PC-3 cells exhibited a defective MAPK/ERK pathway that was unresponsive to adhesion to the ECM, which instead triggered PI 3-kinase/AKT signaling leading to BRCA2 protein depletion and cell proliferation. Reconstitution of MAPK/ERK by recombinant expression of a constitutively active form of MAPK kinase 1 (MEK1) effectively reversed the neoplastic phenotype by increasing BRCA2 expression and preventing any aberrant cell proliferation at rest and upon interaction with ECM proteins. Our results suggest that aberrant loss of MAPK/ERK activity in prostate cancer may play a pivotal role in the malignant phenotype, and provide evidence that interventions aimed at bypassing the signaling block are able to effectively reverse neoplastic unchecked cell proliferation.
منابع مشابه
Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells
Soybean isoflavone genistein has multiple anticancer properties and its pro-apoptotic and anti-proliferative effects have been studied in different cancer cells. However, the mechanisms of action of genistein and its molecular targets on human colon cells have not been fully elucidated. Therefore, caspase-3 and p38 mitogen-activated protein kinase (p38 MAPK) as the main therapeutic targets...
متن کاملBIOINFORMATIC STUDY ON EFFECT OF XANTHOHUMOL AS BIOACTIVE COMPOUND OF HOP IN THE INHIBITION OF THE MAPK/ERK PATHWAY IN THYROID CANCER
Background: Xanthohumol is one of the main bioactive compounds extracted from the female flowers of the hops plant (Humulus lupulus L), that has been shown in several studies to have anti-cancer effects.The MAPK/ERK pathway is one of the key pathways in the regulation of gene expression, cell growth and survival. The abnormal activation of this pathway leads to the uncontrolled cell proliferati...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملPathway in Prostate Cancer Cell Lines Kinase A Activator on the Mitogen-activated Protein Kinase Action of EGF, Insulin-like Growth Factor I, and a Protein Epidermal Growth Factor (EGF) Receptor Blockade Inhibits the
Epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) are potent mitogens that regulate proliferation of prostate cancer cells via autocrine and paracrine loops and promote tumor metastasis. They exert their action through binding to the corresponding cell surface receptors that initiate an intracellular phosphorylation cascade, leading to the activation of mitogen-activated pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2007